# The Impact of Americium on the Transient Analysis of the European Lead System (ELSY)

Milan Tesinsky\*
Youpeng Zhang\*
Janne Wallenius\*



\* Royal Institute of Technology KTH Stockholm, Sweden



#### **GEN IV objectives**

- Sustainability
  - Improved fuel utilization (breeding)
  - Waste minimization (reprocessing)
- Safety
  - Excellent safety and reliability
  - Low probability for core damage
  - Elimination of need for off-site emergency response
- Economics
  - Comparable to other energy sources
- Proliferation
  - Least attractive

#### Six concepts

- Fast reactors
  - Sodium cooled fast reactor (SFR)
  - Lead cooled fast reactor (LFR)
  - Gas cooled fast reactor (GFR)
- Breading ratio < 1 (U-Pu cycle)</li>
  - Very high temperature reactor (VHTR)
  - Super critical water reactor (SCWR)
  - Molten salt reactor (MSR)



#### How about sodium?

- Excellent breeding ratio
- Mature technology (BN-600, Phénix)
- Prototype in operation within 10-15 years (ASTRID)
- High cost for prevention of sodium leaks
- Questionable safety (coolant boiling, severe accident scenario)





Violent exothermic reaction 2 Na + 2  $H_2O \rightarrow$  2 NaOH +  $H_2$ 



#### How about gas coolant?

- Relatively simple design
- Inert gas coolant (He)

- Decay heat removal under loss of pressure
- No operational experience



Proposed layout of ALLEGRO, the GFR demonstrator.





K 705, Alfa-class Soviet submarine

- t Lead does not react with water rapidly
- Coolant boiling virtually impossible
- High degree of natural circulation (high thermal expansion)
- Chemically retains Cs and I in the core (in case of an accident)

- Technology used only in military applications
- Material issues (corrosion & erosion)



# LFR projects in Europe

#### BREST

- 300 MW<sub>e</sub>
- NIKIET, Russia
- SVBR-100
  - LBE; 100 MW<sub>e</sub>
  - Rosatom, Russia

#### MYRRHA

- LBE; 100 MW<sub>+</sub>
- SCK-CEN, Belgium

#### ALFRED

- 120 MW<sub>e</sub>
- LEADER project, Romania

#### ELECTRA

- 0.5 MW<sub>+</sub>
- KTH, Sweden



MYRRHA design



# LFR projects in Europe

#### **ELECTRA – European Lead Cooled Training Reactor**



ELECTRA design

- Test reactor for education and training (suited also for liquid-metal reactor-dynamics research)
- Thermal power 0.5 MW
- Core size: 30 x 30 cm (vessel size 1.5 x 3.0 m)
- Pump-free design; 100% natural circulation
- U-free nitride fuel: (Pu,Zr)N



# LFR projects in Europe

#### ALFRED – Advanced Lead Fast Reactor Demonstrator



ALFRED, the son of ELSY

- Under development within the LEADER project (coordinated by ANSALDO)
- Energy production 120 MW
- MOX fuel
- Steel protection GESA method (aluminum oxide coating)
- Expected hosting country Romania
- Operational in late 20's



### **ELSY**



ELSY design

ELSY - European Lead SYstem

#### Objectives

- Demonstration of the technical feasibility of an LFR
- Demonstration of the ability to fully comply with the GEN IV objectives

Successfully finished in 2010

Basis for LEADER (LEad-cooled European Advanced DEmonstration Reactor)

- MOX fuel
- Electric power 600 MW
- Open square assembly
- 8 x 190 MW spiral-tube heat exchangers



#### This work

# The Impact of Americium on the Transient Analysis of the European Lead System (ELSY)



The core of ELSY used in this work

Americium atomic fraction 0-10% in steps of 2%

#### Two states

- 2 years cooling -> BOC (beginning of cycle)
- ¾ of a 5-year cycle -> EOEC (end of equilibrium cycle)

 $6 \times 2 = 12$  cases; 2 transients for each case

#### **Collaboration**

- Reactivity feedbacks by Monte Carlo code SERPENT Milan Tesinsky
- Transients by deterministic codes SAS4A/SASSYS
   Youpeng Zhang



#### **Transients Definitions**

**UTOP** 

**ULOF** 

**Unprotected Transient Over Power** 

- Insertion of +1\$ within 20 s
- Example: Unpredicted withdrawal of the control rod with the highest worth

**Unprotected Loss of Flow** 

- Reduction of flow rate to 30% within 10 s
- Example: All primary pump trip

Unprotected = no SCRAM



# Reactivity feedbacks

A number of feedbacks has been investigated for each case, such as





### **UTOP**

#### **Unprotected Transient Over Power**





# **UTOP**

#### **Unprotected Transient Over Power**





## **ULOF**





# **ULOF**

#### **Unprotected Loss of Flow**





## **Conclusions and Outlook**

Two transients simulated for the reference ELSY design

#### **UTOP**

**Unprotected Transient Over Power** 

• Insertion of +1\$ within 20 s

Am in the core



Fuel temperature above the safety limits

#### **ULOF**

**Unprotected Loss of Flow** 

Reduction of flow rate to 30% within 10 s

Cladding temperature below safety limits

Safety margins?

The reference design of ELSY – not suitable for Am recycling  $\rightarrow$  Nitride fuel!

# Thank you for your attention